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Application of the Jacobi-Davidson method tospectral calculations in magnetohydrodynamicsA.J.C. Beli�en1, B. van der Holst1, M. Nool2, A. van der Ploeg3, andJ.P. Goedbloed11 FOM-Instituut voor Plasmafysica Rijnhuizen, Postbus 1207,3430 BE Nieuwegein, The Netherlands2 Centre for Mathematics and Computer Science, Postbus 94079,1090 GB Amsterdam, The Netherlands3 MARIN, Postbus 28, 6700 AA Wageningen, The NetherlandsAbstract. For the solution of the generalized complex non-Hermitianeigenvalue problems Ax = �Bx occurring in the spectral study of lin-earized resistive magnetohydrodynamics (MHD) a new parallel solverbased on the recently developed Jacobi-Davidson [18] method has beendeveloped. A brief presentation of the implementation of the solver isgiven here. The new solver is very well suited for the computation ofsome selected interior eigenvalues related to the resistive Alfv�en wavespectrum and is well parallelizable. All features of the spectrum are eas-ily and accurately computed with only a few target shifts.1 IntroductionPlasma is the single most occurring state of matter in the universe. It is charac-terized by such high temperatures that almost all atoms are ionized completely.In most situations where plasmas occur a magnetic �eld is present which willinteract with the charged plasma particles. On a global scale, i.e., on time andlength scales much larger than typical kinetic time and length scales, the interac-tion of plasma with magnetic �elds can be described by magnetohydrodynamics(MHD). This theory is scale invariant so that it is applicable to such diverseand utterly di�erent objects as stellar winds, coronal loops, and thermonuclearfusion plasmas in tokamaks, to name a few.A key aspect of the MHD analysis of plasmas is the study of waves andinstabilities. In thermonuclear fusion plasmas the goal is to con�ne a dense hotplasma for as long as is necessary to reach ignition. MHD instabilities limit thedensities that can be obtained and, hence, have a negative impact on fusionoperation. In fact, the main activity of the MHD fusion theory in the last thirtyyears has been to increase this limit by optimizing the plasma pro�les and plasmacross-section with respect to stability, see for example Ref. [5]. From a plasmaphysics point of view this emphasis on (in)stability does not do justice to theimportance of the stable part of the spectrum. Besides the fact that a multitudeof observed phenomena in astrophysical and laboratory plasmas are wave-like,detailed knowledge of the spectrum of waves allows for MHD spectroscopy (see,



e.g., Refs. [10, 1, 9, 2, 4]). Free oscillations (waves) play a dominant role in MHDspectroscopy. It is the computation of these free eigen-oscillations that we areinterested in in this paper.Mathematically, free oscillations and instabilities of a resistive MHD plasmaare described by a large complex non-Hermitian generalized eigenvalue problem.Until recently, the large scale spectral codes CASTOR [16, 12] and POLLUX [6]that we employ for the computation of tokamak and coronal loop spectra calcu-lated them either by solving for the whole spectrum with a direct dense matrixmethod like QR or using inverse vector iteration for a selection of eigenpair so-lutions in the neighborhood of a target value [11]. The QR method is limitedto very coarse meshes (due to its storage and computation requirements) andlarge values of the resistivity (to get reasonably converged results). Therefore,the eigenvalues obtained with QR are normally used as initial guesses for the in-verse vector iteration only. For the application of interest, viz., the computationof the resistive Alfv�en wave spectrum for realistic small values of the resistivity(� < 10�7), the QR eigenvalues are very poor initial guesses. The original ver-sions of the CASTOR and POLLUX codes contained a two-sided Lanczos solverwith no orthogonalization [3, 11]. Since no orthogonalization is used criteria areimplemented that do away with occurring spurious eigenvalues. However, thesecriteria are not bullet-proof. Not all spurious eigenvalues are removed and occa-sionally proper eigenvalues are labeled as spurious and removed. Furthermore,the accuracy of the computed eigenvalues is generally poor and the inverse vectoriteration has to be used to get good converged eigenvalues. We needed a morerobust iterative solver to obtain several eigenvalues at once within a speci�edregion of the complex plane. We have opted for the Jacobi-Davidson method.The Jacobi-Davidson (JD) subspace iteration method is a new and pow-erful technique for solving non-symmetric eigenvalue problems in a sequence ofsteps [18, 19, 20]. It is extremely suitable for solving the resistive Alfv�en spectrumsince such a spectrum consists of many complex branches. To obtain convergedresults on the interior Alfv�en modes, an e�ective search mechanism is highlydesirable. Such a search mechanism is provided by the JD algorithm. Comparedwith the Arnoldi method, where the projection matrices are always upper Hes-senberg, these matrices in JD are transformed to upper Hessenberg each step.This allows the restart technique of JD to be simpler. Another di�erence is thefact that by selecting the Ritz value that has the maximum absolute value theJD method can be accelerated (see also [14]).In this paper we briey describe the JD method and its parallel implemen-tation for use in MHD spectral computations and apply it to the calculations ofsome resistive MHD spectra in tokamaks.2 Equilibrium, spectral equations and core numericalproblemFor the description of small amplitude waves and instabilities we exploit thelinearized resistive MHD equations for the evolution of the density �, velocity v,



pressure p, and magnetic �eld B, where resistivity is denoted by �:@�1@t = �r � (�0v1) ; (1)�0 @v1@t = �rp1 + (r�B0)�B1 + (r�B1)�B0; (2)@p1@t = �v1 � rp0 � p0r � v1 + ( � 1) � (r�B1)2 ; (3)@B1@t = r� (v1 �B0)�r� (�r�B1) : (4)The subscripts 0 and 1 indicate equilibrium and perturbation quantities, respec-tively. Together with boundary conditions this constitutes the spectral MHDformulation. The equilibrium quantities obey the ideal static force balance:rp0 = (r�B0)�B0; r �B0 = 0: (5)Discretization of Eqs.(1{4) using �nite elements in the direction across themagnetic �eld and Fourier harmonics in the poloidal and toroidal directionsresults in a generalized eigenvalue problem for the case of free plasma oscillationsand instabilities Ax = �Bx (6)where � is an eigenvalue. Its imaginary part describes oscillations, its real part in-stabilities and damping. Matrix B is a complex Hermitian positive de�nite blocktridiagonal matrix while matrix A is a complex non-Hermitian block tridiagonalmatrix. Both A and B are of size M �M with M = nN . The block size n is aalways a multiple of 16. The number of diagonal blocks is denoted by N .3 An eigenvalue solver based on the Jacobi-DavidsonalgorithmThe Jacobi-Davidson method [18, 19, 20] is based on two concepts: the applica-tion of a Ritz-Galerkin approach to the eigenvalue problem (6) with respect toa subspace spanned by an orthonormal basis of low dimensionality, and the con-struction of a new search vector orthogonal to the eigenvector approximationsthat have been obtained so far.To obtain a new search direction the JD algorithm solves a system of linearequations called the correction equation. An appropriate preconditioner has tobe applied to obtain fast convergence such that the correction equation can besolved to some modest accuracy using only a few steps of, e.g., GMRES [17].Because A��B, where � is the target value in the vicinity of which eigenvaluesare sought, has relatively full blocks, due to the structure of the MHD equations,a parallel complete block LU-decomposition has been shown to be a fast androbust method to solve the correction equation [14].Both the construction and the application of L and U can be parallelized ef-�ciently by, prior to decomposition, reordering block rows and columns based on



Domain Decomposition and block Cyclic Reduction (DDCR). Due to the specialblock tridiagonal form of A��B its LU-decomposition can be constructed with-out excessive memory requirements or a large number of operations. On accountof the cyclic reduction part of the decomposition, which starts on all proces-sors, while half of the active processors becomes idle after each step, we maynot expect linear speed-up. However, the overall performance of DDCR is quitegood due to the domain decomposition part (see [15]). Since the constructionand application of the LU-decomposition form the most time consuming partthis guarantees good overall parallel performance as well. In Fig. 1, we show theGop/s rate for the DDCR-decomposition and the corresponding solution pro-cess SOLDDCR on a CRAY-T3E for di�erent block sizes and number of diagonalblocks. From this �gure it is clear that the total number of diagonal blocks, N ,has a far greater inuence on the scalability than the block size n.
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Fig. 1. Gop/s-rate on a CRAY-T3E, with a single-node peak performance of 600Mop/s, for the construction (left) and application (right) of the LU-decompositionbased on a domain decomposition and block cyclic reduction method (DDCR). Theresults are obtained for block sizes n = 64 and n = 256. The number of diagonal blocksvaries from N = 256 till N = 3072.



With the de�nition of Q � (LU)�1B we apply JD to the standard eigenvalueproblem Qx = �x; (7)with the inverse shifted eigenvalues � = 1=(� � �) which automatically makethe desired eigenvalues �, close to the target �, the dominant ones and, hence,`easy' to compute. When the target � is close to an eigenvalue, small pivot ele-ments can be generated in the LU-decomposition of A��B and the applicationof Q may inuence the computed spectrum. In such cases using smaller toler-ances or exploiting di�erent target values can give information on the accuracy.It should be noted that numerical experiments with a similar algorithm usingharmonic Ritz values applied to the generalized eigenvalue problem is a morepromising approach [13, 18]. The main advantage of that approach is that theLU-decomposition is only used as a preconditioner and not as a shift and invertoperator. However, the method exploiting harmonic Ritz values consumes morememory and costs approximately 20% more execution time per Jacobi-Davidsoniteration step.At the k-th step of the JD iteration algorithm the approximation of theeigenvector can be written asVk �s whereVk is theM�k matrix whose columnsare the k search vectors. The search directions have been made orthonormal toeach other using the Modi�ed Gram-Schmidt procedure. The vector s and theapproximation � of an eigenvalue of Vk �s are constructed such that the residualr = (Q �Vk � �Vk)�s is orthogonal to the k search directions. The Rayleigh-Ritzrequirement then leads to V�k �Q �Vk � s = �s; (8)where � and s are an eigenpair of the small matrix V�k �Q �Vk of size k. A properrestart technique keeps the size of the matrix on the left-hand side very smallcompared to M enabling the solution with a direct method, for example QR.The calculation of the eigenvalues and eigenvectors of the small projectedsystem has not been parallelized. Actually, it is performed by all processors,because then after the calculation on each processor all information is availablewithout communication. The projected system (8) of the Jacobi-Davidson pro-cess contains a lot of information about the eigenvalues in the neighborhood ofthe target �. The question arises how much information may be thrown awaywhen a restart is performed, necessarily to keep the projected system small, with-out slowing down the convergence behavior too much. Obviously, in the parallelcase the size of the projected system plays even a more important role in wallclock time than in the sequential case. In [13], it is shown that it depends onthe value M=p, where p is the number of processors, whether restarts lead to areduction in the wall clock time for the parallel JD process.The maximum problem size depends on the number of processors p and thetotal amount of memory per processor. Our parallel implementation requires perprocessor128Npn2 + 16Np(3m+Nev + 7) + 96n2 + 64m(m+ 1) bytes; (9)



as is shown in [13], where Np denotes the maximum number of diagonal blockson one processor, m the maximum allowed size of the projected system and Nevstands for the desired number of eigenvalues.4 Application to resistive toroidal spectraAs an example, we have used the JD solver to solve the stable resistive spectrumof a tokamak with circular cross-section and an inverse aspect ratio � = 0:2. Theresults are shown in Fig. 2.
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Fig. 2. The resistive spectrum for unit toroidal mode number, inverse aspect ratio� = 0:2, and resistivity � = 2:5� 10�5. Purely damped eigenmodes have been left out.The resistive spectrum was calculated with 1000 radial points and 4 poloidalharmonics, corresponding to matrices A and B with a block size of n = 64 andN = 1000 diagonal blocks. The acceptance criterium of a Ritz eigenpair leadingto a eigenpair of the original problem (6) is that the 2-norm of the residual issmaller than 10�6 times the eigenvalue. The implementation of the JD solver issuch that it terminates whenNev are found or the maximum number of iterationsis surpassed. The computations were done with Nev = 10 to keep the size of



the matrix occurring in Eq. (8) as small as possible. Several target shifts arenecessary to map out the spectrum and many eigenvalues were found by morethan one shift. If the target is not well-chosen, it may happen that less thanNev eigenvalues will be found. In that case a new target based on the obtainedspectrum must be taken rather than to increase the number of iterations.Inspection of the number of radial nodes of the eigenfunctions can be used toensure that all eigenvalues have been found. For smaller resistivity the topologyof the spectrum remains the same but the number of eigenvalues situated onthe curves shown in Fig. 2 increases (the number is proportional to ��1=2). Onethen has the choice of enlarging Nev so that more eigenvalues can be found forone speci�ed target shift at the expense of larger matrices in the Rayleigh-Ritzpart, or using more target shifts. The fact that new target shifts require newLU-decompositions, which are the computationally most intensive operations,(though well parallelizable) the �rst option seems the best.Physically, the eigenvalues are converged as well: taking more poloidal har-monics or more radial grid points into account results in changes that are smallerthan the acceptance criterium for the Ritz pairs. The physical interpretation ofresistive spectra, like the one shown in Fig. 2, can be found in Ref. [7].5 Conclusions and OutlookThe Jacobi-Davidson method appears to be an excellent method for parallelcomputation of resistive Alfv�en spectra that occur in studies of the linearizedinteraction between plasmas and magnetic �elds. The method discussed in thispaper is based on solving projected eigenvalue problems of an order typicallyless than 30.Within Jacobi-Davidson a parallel method to compute the action of the in-verse of the block-tridiagonal matrix A � �B is used. In this approach, calledDDCR, a block-reordering based on a combination of Domain Decomposition andCyclic Reduction is combined with a complete block-tridiagonal LU decompo-sition of A � �B, so LU = A � �B. Both the construction of L and U and thetriangular solves parallelize well.We have successfully applied the JD-solver to the problem of computingbranches of the stable resistive Alfv�en spectrum with only a few target values �(smaller resistivity requires more targets) and with an accuracy of 10�6.This has given us enough con�dence to endeavor into the much more com-plex �eld of computing the spectra for plasmas with background ows, which ispresently under taken [8].Acknowledgments. This work was performed as part of the researchprogramme of the `Stichting voor Fundamenteel Onderzoek der Materie' (FOM)with �nancial support from the `Nederlandse Organisatie voor WetenschappelijkOnderzoek' (NWO). Part of this work is done in the project on `Parallel Com-putational Magneto-Fluid Dynamics', funded by the NWO Priority Program on
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